Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-Shot Learning Through Cross-Modal Transfer

This work introduces a model that can recognize objects in images even if no training data is available for the objects. The only necessary knowledge about the unseen categories comes from unsupervised large text corpora. In our zero-shot framework distributional information in language can be seen as spanning a semantic basis for understanding what objects look like. Most previous zero-shot le...

متن کامل

Monocular Depth Estimation by Learning from Heterogeneous Datasets

Depth estimation provides essential information to perform autonomous driving and driver assistance. Especially, Monocular Depth Estimation is interesting from a practical point of view, since using a single camera is cheaper than many other options and avoids the need for continuous calibration strategies as required by stereo-vision approaches. State-of-theart methods for Monocular Depth Esti...

متن کامل

Towards Domain Independence for Learning-based Monocular Depth Estimation

Modern autonomous mobile robots require a strong understanding of their surroundings in order to safely operate in cluttered and dynamic environments. Monocular depth estimation offers a geometry-independent paradigm to detect free, navigable space with minimum space and power consumption. These represent highly desirable features, especially for micro aerial vehicles. In order to guarantee rob...

متن کامل

Zero-Shot Transfer Learning for Event Extraction

Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using stru...

متن کامل

Aperture Supervision for Monocular Depth Estimation

We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera’s aperture as supervision. Prior works use a depth sensor’s outputs or images of the same scene from alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2020

ISSN: 0162-8828,2160-9292,1939-3539

DOI: 10.1109/tpami.2020.3019967